
LMITOOL: a Package

for LMI Optimization in Scilab

User’s Guide

R. Nikoukhah∗ F. Delebecque†. L. El Ghaoui‡

Abstract

This report describes a user-friendly Scilab package, and in particular its two main functions lmisolver
and lmitool for solving Linear Matrix Inequalities problems. This package uses Scilab function semidef,
an interface to the program Semidefinite Programming SP (Copyright c©1994 by Lieven Vandenberghe and
Stephen Boyd) distributed with Scilab.

Contents

1 Purpose 2

2 Function lmisolver 2

2.1 Syntax . 2

2.2 Examples . 3

2.2.1 State-feedback with control saturation constraint . 3

2.2.2 Control of jump linear systems . 4

2.2.3 Descriptor Lyapunov inequalities . 5

2.2.4 Mixed H2/H∞ Control . 5

2.2.5 Descriptor Riccati equations . 6

2.2.6 Linear programming with equality constraints . 7

2.2.7 Sylvester Equation . 7

3 Function LMITOOL 9

3.1 Non-interactive mode . 9

3.1.1 Syntax . 9

3.1.2 Example . 9

3.2 Interactive mode . 10

3.2.1 Syntax . 10

3.2.2 Example . 10

A How lmisolver works 13

B Other versions 13

∗Ramine.Nikoukhah@inria.fr
†Francois.Delebecque@inria.fr
‡ENSTA, 32, Bvd. Victor, 75739 Paris, France. Internet: elghaoui@ensta.fr. Research supported in part by DRET under

contract 92017-BC14.

1

1 Purpose

Many problems in systems and control can be formulated as follows (see [2]):

Σ :

minimize f(X1, . . . , XM)

subject to

{

Gi(X1, . . . , XM) = 0, i = 1, 2, ..., p,
Hj(X1, . . . , XM) ≥ 0, j = 1, 2, .., q.

where

• X1, . . . , XM are unknown real matrices, referred to as the unknown matrices,

• f is a real linear scalar function of the entries of the unknown matrices X1, . . . , XM ; it is referred to as
the objective function,

• Gi’s are real matrices with entries which are affine functions of the entries of the unknown matrices,
X1, . . . , XM ; they are referred to as “Linear Matrix Equality” (LME) functions,

• Hj ’s are real symmetric matrices with entries which are affine functions of the entries of the unknown
matrices X1, . . . , XM ; they are referred to as “Linear Matrix Inequality” (LMI) functions. (In this report,
the V ≥ 0 stands for V positive semi-definite unless stated otherwise).

The purpose of LMITOOL is to solve problem Σ in a user-friendly manner in Scilab, using the code SP [1]. This
code is intended for small and medium-sized problems (say, up to a few hundred variables).

2 Function lmisolver

LMITOOL is built around the Scilab function lmisolver. This function computes the solution X1, . . . , XM

of problem Σ, given functions f , Gi and Hj . To solve Σ, user must provide an evaluation function which
“evaluates” f , Gi and Hj as a function the unknown matrices, as well as an initial guess on the values of the
unknown matrices. User can either invoke lmisolver directly, by providing the necessary information in a
special format or he can use the interactive function lmitool described in Section 3.

2.1 Syntax

[XLISTF[,OPT]] = lmisolver(XLIST0,EVALFUNC[,options])

where

• XLIST0: a list structure including matrices and/or list of matrices. It contains initial guess on the values
of the unknown matrices. In general, the ith element of XLIST0 is the initial guess on the value of
the unknown matrix Xi. In some cases however it is more convenient to define one or more elements
of XLIST0 to be lists (of unknown matrices) themselves. This is a useful feature when the number of
unknown matrices is not fixed a priori (see Example of Section 2.2.2).

The values of the matrices in XLIST0, if compatible with the LME functions, are used as intial condition
for the optimization algorithm; they are ignored otherwise. The size and structure of XLIST0 are used to
set up the problem and determine the size and structure of the output XLISTF.

• EVALFUNC: a Scilab function called evaluation function (supplied by the user) which evaluates the LME,
LMI and objective functions, given the values of the unknown matrices. The syntax is:

[LME,LMI,OBJ]=EVALFUNC(XLIST)

where

– XLIST: a list, identical in size and structure to XLIST0.

2

– LME: a list of matrices containing values of the LME functions Gi’s for X values in XLIST. LME can
be a matrix in case there is only one LME function to be evaluated (instead of a list containing this
matrix as unique element). It can also be a list of a mixture of matrices and lists which in turn
contain values of LME’s, and so on.

– LMI: a list of matrices containing the values of the LMI functions Hj ’s for X values in XLIST. LMI
can also be a matrix (in case there is only one LMI function to be evaluated). It can also be a list
of a mixture of matrices and lists which in turn contain values of of LMI’s, and so on.

– OBJ: a scalar equal to the value of the objective function f for X values in XLIST.

If the Σ problem has no equality constraints then LME should be []. Similarly for LMI and OBJ.

• options: a 5×1 vector containing optimization parameters Mbound, abstol, nu, maxiters, and reltol,
see manual page for semidef for details (Mbound is a multiplicative coefficient for M). This argument is
optional, if omitted, default parameters are used.

• XLISTF: a list, identical in size and structure to XLIST0 containing the solution of the problem (optimal
values of the unknown matrices).

• OPT: a scalar corresponding to the optimal value of the minimization problem Σ.

2.2 Examples

2.2.1 State-feedback with control saturation constraint

Consider the linear system
ẋ = Ax+Bu

where A is an n× n and B, an n× nu matrix. There exists a stabilizing state feedback K such that for every
initial condition x(0) with ‖x(0)‖ ≤ 1, the resulting control satisfies ‖u(t)‖ for all t ≥ 0, if and only if there
exist an n× n matrix Q and an nu × n matrix Y satisfying the equality constraint

Q−QT = 0

and the inequality constraints

Q ≥ 0

−AQ−QAT −BY − Y TBT > 0
(

u2

maxI Y
Y T Q

)

≥ 0

in which case one such K can be constructed as K = Y Q−1.

To solve this problem using lmisolver, we first need to construct the evaluation function.

function [LME,LMI,OBJ]=sf_sat_eval(XLIST)

[Q,Y]=XLIST(:)

LME=Q-Q’

LMI=list(-A*Q-Q*A’-B*Y-Y’*B’,[umax^2*eye(Y*Y’),Y;Y’,Q],Q-eye)

OBJ=[]

Note that OBJ=[] indicates that the problem considered is a feasibility problem, i.e., we are only interested in
finding a set of X ’s that satisfy LME and LMI functions.

Assuming A, B and umax already exist in the environment, we can call lmisolver, and reconstruct the
solution in Scilab, as follows:

--> Q_init=zeros(A);

--> Y_init=zeros(B’);

--> XLIST0=list(Q_init,Y_init);

--> XLIST=lmisolver(XLIST0,sf_sat_eval);

--> [Q,Y]=XLIST(:)

3

These Scilab commands can of course be encapsulated in a Scilab function, say sf sat. Then, To solve this
problem, all we need to do is type:

--> [Q,Y]=sf_sat(A,B,umax)

We call sf sat the solver function for this problem.

2.2.2 Control of jump linear systems

We are given a linear system
ẋ = A(r(t))x +B(r(t))u,

where A is n×n and B is n×nu. The scalar parameter r(t) is a continuous-time Markov process taking values
in a finite set {1, . . . , N}.

The transition probabilities of the process r are defined by a “transition matrix” Π = (πij), where πij ’s
are the transition probability rates from the i-th mode to the j-th. Such systems, referred to as “jump linear
systems”, can be used to model linear systems subject to failures.

We seek a state-feedback control law such that the resulting closed-loop system is mean-square stable. That
is, for every initial condition x(0), the resulting trajectory of the closed-loop system satisfies limt→∞ E‖x(t)‖2 =
0.

The control law we look for is a mode-dependent linear state-feedback, i.e. it has the form u(t) = K(r(t))x(t);
K(i)’s are nu × n matrices (the unknowns of our control problem).

It can be shown that this problem has a solution if and only if there exist n× n matrices Q(1), . . . , Q(N),
and nu × n matrices Y (1), . . . , Y (N), such that

Q(i)−Q(i)T = 0,

TrQ(1) + . . .+TrQ(N)− 1 = 0.

and
[

Q(i) Y (i)T

Y (i) I

]

> 0,

−

A(i)Q(i) +Q(i)A(i)T +B(i)Y (i) + Y (i)TB(i)T +

N
∑

j=1

πjiQ(j)

 > 0, i = 1, . . . , N,

If such matrices exist, a stabilizing state-feedback is given by K(i) = Y (i)Q(i)−1, i = 1, . . . , N .

In the above problem, the data matrices are A(1), . . . , A(N), B(1), . . . , B(N) and the transition matrix Π.
The unknown matrices are Q(i)’s (which are symmetric n×n matrices) and Y (i)’s (which are nu×n matrices).
In this case, both the number of the data matrices and that of the unknown matrices are a-priori unknown.

The above problem is obviously a Σ problem. In this case, we can let XLIST be a list of two lists: one
representing the Q’s and the other, the Y ’s.

The evaluation function required for invoking lmisolver can be constructed as follows:

function [LME,LMI,OBJ]=jump_sf_eval(XLIST)

[Q,Y]=XLIST(:)

N=size(A); [n,nu]=size(B(1))

LME=list(); LMI1=list(); LMI2=list()

tr=0

for i=1:N

tr=tr+trace(Q(i))

LME(i)=Q(i)-Q(i)’

LMI1(i)=[Q(i),Y(i)’;Y(i),eye(nu,nu)]

SUM=zeros(n,n)

for j=1:N

SUM=SUM+PI(j,i)*Q(j)

4

end

LMI2(i)= A(i)*Q(i)+Q(i)*A(i)’+B(i)*Y(i)+Y(i)’*B(i)’+SUM

end

LMI=list(LMI1,LMI2)

LME(N+1)=tr-1

OBJ=[]

Note that LMI is also a list of lists containing the values of the LMI matrices. This is just a matter of convenience.

Now, we can solve the problem in Scilab as follows (assuming lists A and B, and matrix PI have already
been defined).

First we should initialize Q and Y.

--> N=size(A); [n,nu]=size(B(1)); Q_init=list(); Y_init=list();

--> for i=1:N, Q_init(i)=zeros(n,n);Y_init(i)=zeros(nu,n);end

Then, we can use lmisolver as follows:

--> XLIST0=list(Q_init,Y_init)

--> XLISTF=lmisolver(XLIST0,jump_sf_eval)

--> [Q,Y]=XLISTF(:);

The above commands can be encapsulated in a solver function, say jump sf, in which case we simply need
to type:

--> [Q,Y]=jump_sf(A,B,PI)

to obtain the solution.

2.2.3 Descriptor Lyapunov inequalities

In the study of descriptor systems, it is sometimes necessary to find (or find out that it does not exist) an n×n
matrix X satisfying

ETX = XTE ≥ 0

ATX +XTA+ I ≤ 0

where E and A are n × n matrices such that E,A is a regular pencil. In this problem, which clearly is a Σ
problem, the LME functions play important role. The evaluation function can be written as follows

function [LME,LMI,OBJ]=dscr_lyap_eval(XLIST)

X=XLIST(:)

LME=E’*X-X’*E

LMI=list(-A’*X-X’*A-eye,E’*X)

OBJ=[]

and the problem can be solved by (assuming E and A are already defined)

--> XLIST0=list(zeros(A))

--> XLISTF=lmisolver(XLIST0,dscr_lyap_eval)

--> X=XLISTF(:)

2.2.4 Mixed H2/H∞ Control

Consider the linear system

ẋ = Ax+B1w +B2u

z1 = C1x+D11w +D12u

z2 = C2x+D22u

5

The mixed H2/H∞ control problem consists in finding a stabilizing feedback which yields ‖Tz1w‖∞ < γ and
minimizes ‖Tz2w‖2 where ‖Tz1w‖∞ and ‖Tz2w‖2 denote respectively the closed-loop transfer functions from w
to z1 and z2. In [3], it is shown that the solution to this problem can be expressed as K = LX−1 where X and
L are obtained from the problem of minimizing Trace(Y) subject to:

X −XT = 0, Y − Y T = 0,

and

−

(

AX +B2L+ (AX +B2L)
T +B1B

T
1 XCT

1 + LTDT
12 +B1D

T
11

C1X +D12L+D11B
T
1

−γ2I +D11D
T
11

)

> 0

(

Y C2X +D22L
(C2X +D22L)

T X

)

> 0

To solve this problem with lmisolver, we define the evaluation function:

function [LME,LMI,OBJ]=h2hinf_eval(XLIST)

[X,Y,L]=XLIST(:)

LME=list(X-X’,Y-Y’);

LMI=list(-[A*X+B2*L+(A*X+B2*L)’+B1*B1’,X*C1’+L’*D12’+B1*D11’;...

(X*C1’+L’*D12’+B1*D11’)’,-gamma^2*eye+D11*D11’],...

[Y,C2*X+D22*L;(C2*X+D22*L)’,X])

OBJ=trace(Y);

and use it as follows:

--> X_init=zeros(A); Y_init=zeros(C2*C2’); L_init=zeros(B2’)

--> XLIST0=list(X_init,Y_init,L_init);

--> XLISTF=lmisolver(XLIST0,h2hinf_eval);

--> [X,Y,L]=XLISTF(:)

2.2.5 Descriptor Riccati equations

In Kalman filtering for descriptor system

Ex(k + 1) = Ax(k) + u(k)

y(k + 1) = Cx(k + 1) + r(k)

where u and r are zero-mean, white Gaussian noise sequences with covariance Q and R respectively, one needs
to obtain the positive solution to the descriptor Riccati equation (see [4])

P = −
(

0 0 I
)

APAT +Q 0 E
0 R C
ET CT 0

−1

0
0
I

 .

It can be shown that this problem can be formulated as a Σ problem as follows: maximize Trace(P) under
constraints

P − PT = 0

and

APAT +Q 0 EP
0 R CP

PTET PTCT P

 ≥ 0.

The evaluation function is:

function [LME,LMI,OBJ]=ric_dscr_eval(XLIST)

LME=P-P’

LMI=[A*P*A’+Q,zeros(A*C’),E*P;zeros(C*A’),R,C*P;P*E’,P*C’,P]

OBJ=-trace(P)

6

which can be used as follows (asuming E, A, C, Q and R are defined and have compatible sizes–note that E
and A need not be square).

--> P_init=zeros(A’*A)

--> P=lmisolver(XLIST0,ric_dscr_eval)

2.2.6 Linear programming with equality constraints

Consider the following classical optimization problem

minimize eTx
subject to Ax+ b ≥ 0,

Cx + d = 0.

where A and C are matrices and e, b and d are vectors with appropriate dimensions. Here the sign ≥ is to be
understood elementwise.

This problem can be formulated in LMITOOL as follows:

function [LME,LMI,OBJ]=linprog_eval(XLIST)

[x]=XLIST(:)

[m,n]=size(A)

LME=C*x+d

LMI=list()

tmp=A*x+b

for i=1:m

LMI(i)=tmp(i)

end

OBJ=e’*x

and solved in Scilab by (assuming A, C, e, b and d and an initial guess x0 exist in the environment):

--> x=lmisolver(x0,linprog_eval)

2.2.7 Sylvester Equation

The problem of finding matrix X satisfying

AX +XB = C

or
AXB = C

where A and B are square matrices (of possibly different sizes) is a well-known problem. We refer to the first
equation as the continuous Sylvester equation and the second, the discrete Sylvester equation.

These two problems can easily be formulated as Σ problems as follows:

function [LME,LMI,OBJ]=sylvester_eval(XLIST)

[X]=XLIST(:)

if flag==’c’ then

LME=A*X+X*B-C

else

LME=A*X*B-C

end

LMI=[]

OBJ=[]

with a solver function such as:

7

function [X]=sylvester(A,B,C,flag)

[na,ma]=size(A);[nb,mb]=size(B);[nc,mc]=size(C);

if ma<>na|mb<>nb|nc<>na|mc<>nb then error("invalid dimensions");end

XLISTF=lmisolver(zeros(nc,mc),sylvester_eval)

X=XLISTF(:)

Then, to solve the problem, all we need to do is to (assuming A, B and C are defined)

--> X=sylvester(A,B,C,’c’)

for the continuous problem and

--> X=sylvester(A,B,C,’d’)

for the discrete problem.

8

3 Function LMITOOL

The purpose of LMITOOL is to automate most of the steps required before invoking lmisolver. In particular,
it generates a *.sci file including the solver function and the evaluation function or at least their skeleton. The
solver function is used to define the initial guess and to modify optimization parameters (if needed).

lmitool can be invoked with zero, one or three arguments.

3.1 Non-interactive mode

lmitool can be invoked with three input arguments as follows:

3.1.1 Syntax

txt=lmitool(probname,varlist,datalist)

where

• probname: a string containing the name of the problem,

• xlist: a string containing the names of the unknown matrices (separated by commas if there are more
than one).

• dlist: a string containing the names of data matrices (separated by commas if there are more than one).

• txt: a string providing information on what the user should do next.

In this mode, lmitool generates a file in the current directory. The name of this file is obtained by adding
“.sci” to the end of probname. This file is the skeleton of a solver function and the corresponding evaluation
function.

3.1.2 Example

Suppose we want to use lmitool to solve the problem presented in Section 2.2.1. Invoking

-->txt=lmitool(’sf_sat’,’Q,Y’,’A,B,umax’)

yields the output

--> txt =

! To solve your problem, you need to !

! !

!1- edit file /usr/home/DrScilab/sf_sat.sci !

! !

!2- load (and compile) your functions: !

! !

! getf(’/usr/home/DrScilab/sf_sat.sci’,’c’) !

! !

!3- Define A,B,umax and call sf_sat function: !

! !

! [Q,Y]=sf_sat(A,B,umax) !

! !

!To check the result, use [LME,LMI,OBJ]=sf_sat_eval(list(Q,Y)) !

and results in the creation of the file ’/usr/home/curdir/sf sat.sci’ with the following content:

9

function [Q,Y]=sf_sat(A,B,umax)

// Generated by lmitool on Tue Feb 07 10:30:35 MET 1995

Mbound = 1e3;

abstol = 1e-10;

nu = 10;

maxiters = 100;

reltol = 1e-10;

options=[Mbound,abstol,nu,maxiters,reltol];

///////////DEFINE INITIAL GUESS BELOW

Q_init=...

Y_init=...

///////////

XLIST0=list(Q_init,Y_init)

XLIST=lmisolver(XLIST0,sf_sat_eval,options)

[Q,Y]=XLIST(:)

/////////////////EVALUATION FUNCTION////////////////////////////

function [LME,LMI,OBJ]=sf_sat_eval(XLIST)

[Q,Y]=XLIST(:)

/////////////////DEFINE LME, LMI and OBJ BELOW

LME=...

LMI=...

OBJ=...

It is easy to see how a small amount of editing can do the rest!

3.2 Interactive mode

lmitool can be invoked with zero or one input argument as follows:

3.2.1 Syntax

txt=lmitool()

txt=lmitool(file)

where

• file: is a string giving the name of an existing “.sci” file generated by lmitool.

In this mode, lmitool is fully interactive. Using a succession of dialogue boxes, user can completely define his
problem. This mode is very easy to use and its operation completely self explanatory. Invoking lmitool with
one argument allows the user to start off with an existing file. This mode is useful for modifying existing files
or when the new problem is not too much different from a problem already treated by lmitool.

3.2.2 Example

Consider the following estimation problem
y = Hx+ V w

where x is unknown to be estimated, y is known, w is a unit-variance zero-mean Gaussian vector, and

H ∈ Co {H(1), ..., H(N)} , V ∈ Co {V (1), ..., V (N)}

10

where Co denotes the convex hull and H(i) and V (i), i = 1, ..., N, are given matrices.

The objective is to find L such that the estimate

x̂ = Ly

is unbiased and the worst case estimation error variance E(‖x− x̂‖2) is minimized.

It can be shown that this problem can be formulated as a Σ problem as follows: minimize γ subject to

I − LH(i) = 0, i = 1, ..., N,

X(i)−X(i)T = 0, i = 1, ..., N,

and
(

I (L(i)V (i))T

L(i)V (i) X(i)

)

≥ 0, i = 1, ..., N,

γ − Trace(X(i)) ≥ 0, i = 1, ..., N.

To use lmitool for this problem, we invoke it as follows:

--> lmitool()

This results is an interactive session which is partly illustrated in following figures.

figure=fig2.eps,height=6cm

Figure 1: This window must be edited to define problem name and the name of variables used.

11

figure=fig3.eps,height=6cm

Figure 2: For the example at hand the result of the editing should look something like this.

figure=fig4.eps,height=12cm

Figure 3: This is the skeleton of the solver function and the evaluation function generated by LMITOOL using
the names defined previously.

figure=fig8.eps,height=15cm

Figure 4: After editing, we obtain.

figure=fig6.eps,height=3cm

Figure 5: A file is proposed in which the solver and evaluation functions are to be saved. You can modify it if
you want.

12

A How lmisolver works

The function lmisolver works essentially in four steps:

1. Initial set-up. The sizes and structure of the initial guess are used to set up the problem, and in particular
the size of the unknown vector.

2. Elimination of equality constraints. Making repeated calls to the evaluation function, lmisolver gene-
rates a canonical representation of the form

minimize c̃T z

subject to F̃0 + z1F̃1 + · · ·+ zm̃F̃m̃ ≥ 0, Az + b = 0,

where z contains the coefficients of all matrix variables. This step uses extensively sparse matrices to
speed up the computation and reduce memory requirement.

3. Elimination of variables. Then, lmisolver eliminates the redundant variables. The equality constraints
are eliminated by computing the null space N of A and a solution z0 (if any) of Ax + b = 0. At this
stage, all solutions of the equality constraints are parametrized by

z = Nx+ z0,

where x is a vector containing the independent variables. The computation of N, z0 is done using sparse
LU functions of Scilab.

Once the equality constraints are eliminated, the problem is reformulated as

minimize cTx
subject to F0 + x1F1 + · · ·+ xmFm ≥ 0,

where c is a vector, and F0, . . . , Fm are symmetric matrices, and x contains the independent elements in
the matrix variables X1, . . . , XM . (If the Fi’s are dependent, a column compression is performed.)

4. Optimization. Finally, lmisolver makes a call to the function semidef (an interface to SP [1]). This
phase is itself divided into a feasibility phase and a minimization phase (only if the linear objective
function is not empty). The feasibility phase is avoided if the initial guess is found to be feasible.

The function semidef is called with the optimization parameters abstol, nu, maxiters, reltol. The
parameter M is set above the value

Mbnd*max(sum(abs([F0 ... Fm])))

For details about the optimization phase, and the meaning of the above optimization parameters see
manual page for semidef.

B Other versions

LMITOOL is also available on Matlab. The Matlab version can be obtained by anonymous ftp from ftp.ensta.fr

under /pub/elghaoui/lmitool.

13

References

[1] Vandenberghe, L., and S. Boyd, “Semidefinite Programming,” Internal Report, Stanford University, 1994
(submitted to SIAM Review).

[2] Boyd, S., L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control

Theory, SIAM books, 1994.

[3] Khargonekar, P. P., and M. A. Rotea, “Mixed H2/H∞ Control: a Convex Optimization Approach,” IEEE

Trans Aut. Contr., 39 (1991), pp. 824-837.

[4] Nikoukhah, R., Willsky, A. S., and B. C. Levy, “Kalman Filtering and Riccati Equations for Descriptor
Systems,” IEEE Trans Aut. Contr., 37 (1992), pp. 1325-1342.

14

